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Abstract

In this paper, we present a general iterative method for the solution of the Riemann problem for hyperbolic systems

of PDEs. The method is based on the multiple shooting method for free boundary value problems. We demonstrate the

method by solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even for conditions repre-

sentative of routine laboratory conditions and military ballistics, dramatic differences are seen between the exact and

approximate Riemann solution. The greatest discrepancy arises from misallocation of energy between compressional

and thermal modes by the approximate solver, resulting in nonphysical entropy and temperature estimates. Several

pathological conditions arise in common practice and modifications to the method to handle these are discussed. These

include points where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that occur upon melting.
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1. Introduction

We are interested in solving shock capturing problems in solid mechanics [9], and coupling solid me-

chanics with fluid dynamics and vacuum boundary conditions [10], in the context of Eulerian Godunov
methods. These projects use an approximate Riemann solver which is based on decomposing the jump
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across a discontinuity in a set of right eigenvectors of an effective matrix linearizing the system of partial

differential equations. This approximation treats shocks and rarefactions equally and is known to be en-

tropy violating in some circumstances. In order to better diagnose the behavior of this approximate Rie-
mann solver for solid mechanics, and ultimately to develop more accurate approximate schemes, it is

desirable to have reference to an ‘‘exact’’ Riemann solver for this system. In addition to its use in validating

approximate solvers, exact Riemann solvers may be used in adaptive strategies in which the expensive

solver is used judiciously.

Wang et al. [18] report having constructed an exact elastic–plastic Riemann solver for use in front

tracking applications but no description of this solver is available. A number of workers have analyzed the

properties of Riemann problem solutions in elasticity. Tang and Ting [13] calculate wave curves for an

elastically isotropic material under uniaxial deformation. Garaizar [1] outlines an algorithm for solving the
elastic Riemann problem under assumptions of elastic isotropy and uniaxial deformation. Trangenstein and

Pember [15] present analytical solutions to Riemann problems including elasticity and perfect plasticity.

Godunov [2] proposed an exact iterative Riemann solver for gas dynamics as part of the development of

the method that bears his name. Subsequent work in gas dynamics has recognized that an exact Riemann

solver is not necessary to achieve high order accuracy in a Godunov method, therefore simpler approximate

Riemann solver strategies are generally employed. Toro [14] describes a range of exact and approximate

Riemann solvers for gas dynamics.

In Section 2, we present a general algorithm for hyperbolic systems of n conservation laws containing m
genuinely nonlinear waves left of the contact and m right of the contact. We assume initially strict genuine

nonlinearity and no degeneracy apart from the n� 2m waves forming the contact discontinuity. Assuming

also that the underlying equation of state is convex, and that the jump between left and right states is small

enough, Lax�s implicit function theorem argument [6, Theorem 9.1] holds for the existence and uniqueness

of solutions to the Riemann problem. In the context of the method presented in Section 2, these conditions

make our iteration scheme a contractive mapping; and this implies both existence and uniqueness of the

solution in the neighborhood of the fixed point. When the Riemann problem is well-posed, possessing a

single Lax-like solution comprised of simple waves, and when the algorithm described here converges, it
converges to the correct entropy solution. More generally, existence and uniqueness of solutions to the

Riemann problem is an important open problem except for special systems.

In Section 3, we analyze the equations of motion for elasticity in conservation form and provide details

relevant to the implementation of the scheme outlined in Section 2. In Section 4, we present example

calculations. In Section 5, we discuss important cases in solid mechanics in which the assumptions em-

ployed in Section 2 break down. These are by no means exhaustive discussions, as even in gas dynamics a

large number of pathological conditions may occur [8]. Section 5.1 discusses lack of genuine nonlinearity

that occurs at special points of high symmetry in configuration space. Section 5.2 deals with degeneracy that
occurs on the reference isentropes of elastically isotropic materials. Section 5.3 deals with the degeneracy

and eigenvector deficiency that occurs when shear strength is lost as upon melting. Conclusions are sum-

marized in Section 6.
2. An exact iterative Riemann solver

Here, we consider a general hyperbolic system of conservation laws in one dimension,

Ut þ F ðUÞx ¼ 0; ð1Þ

with U ; F 2 Rn. We assume that the matrix A,

A ¼ DUF ðUÞ ð2aÞ
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with eigenvalue decomposition

A ¼ RKL; L ¼ R�1; ð2bÞ

has 2m distinct and genuinely nonlinear eigenvalues, with the remaining n� 2m eigenvalues being linearly

degenerate and equal. Here, K is the diagonal matrix of eigenvalues, assumed ordered:

k1 < k2 < � � � < km < kmþ1 ¼ � � � ¼ kn�m < knþ1�m < � � � < kn�1 < kn ð3Þ

and R is the matrix whose kth column rk is the kth right eigenvector of A. The conditions of genuine

nonlinearity and linear degeneracy are

ðrk � DU Þkk 6¼ 0; k ¼ 1; . . . ;m; nþ 1� m; . . . ; n ð4aÞ

and

ðrk � DU Þkk ¼ 0; k ¼ mþ 1; . . . ; n� m; ð4bÞ

respectively.

With these assumptions, the solution to the Riemann problem

Uðx; 0Þ ¼ UL; x6 0;
UR; x > 0

�
ð5Þ

will consist of 2mþ 2 constant states bounded by shocks, or rarefaction fans, of the 2m nonlinear waves and

by a contact discontinuity [7]:

UL ¼ U0 j
1-wave

U1 j
2-wave

U2 j � � �Um j
contact

Umþ1 j � � �U2m j
2m-wave

U2mþ1 ¼ UR ð6Þ

with, schematically,

Uk ¼ Uk�1 þ
R
rkðUÞda; k-rarefaction; or

½F ðUkÞ � F ðUk�1Þ�=sk; k-shock;

�
ð7Þ

where sk is velocity of the k-shock.
The solution fUkg, k ¼ 0; . . . ; 2mþ 1, is subject to a consistency requirement; the so-called entropy

condition. For k-rarefactions,

kkðUk�1Þ < kkðUkÞ ð8Þ

and for k-shocks,

kkðUk�1Þ > sk > kkðUkÞ; ð9aÞ
kk�1ðUk�1Þ < sk < kkþ1ðUkÞ: ð9bÞ

Additionally, there is a condition of consistent ordering obtained from consideration of (6), but not

contained within (9a), for adjacent shocks:

sk < skþ1: ð10Þ

Our approach to obtaining solution (6) is based upon the multiple shooting method for boundary value

problems. The Riemann problem is essentially a set of 2m boundary value problems: to be determined are

the changes in state variables across each wave. The boundaries (the 2m interior constant states, or

equivalently the end points of each wave or contact) are subject to the condition that the state variables are
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continuous functions of wave amplitude from the left and the right. These are free boundary problems since

the amplitude of the waves ak must also be determined.

It is well known [7] that one may choose a parameterization n such that for both a k-shock and a
k-rarefaction one has

Uð0Þ ¼ U0; ð11aÞ
d

dn
UðnÞ

����
n¼0

¼ rkðU0Þ; ð11bÞ
d2

dn2
UðnÞ

����
n¼0

¼ rk � DUrkðUÞjU¼U0
: ð11cÞ

We wish to exploit this second-order continuity in U to choose a wave strength parameterization a. One

choice consistent with (11) (and also (22) and (23) below) is

akðUðnÞÞ ¼ lkðUð0ÞÞ � UðnÞð � Uð0ÞÞ; ð12Þ
where lkðUð0ÞÞ is the kth left eigenvector of the matrix A ¼ DUF ðUÞ, evaluated at the centering point Uð0Þ
of the wave.

To be generally applicable, (12) requires that aðnÞ be monotonic. For general equations of state this
cannot be guaranteed for strong shocks, and this is consequently a limitation of the method presented

herein. This problem is discussed further in Section 2.1.

Let us denote by U
ðMÞ
k the Mth iterative approximation to Uk, and by aðMÞ

k the Mth iterative estimate of

the strength of the k-wave. For all iteration steps M we have U
ðMÞ
0 ¼ UL and U

ðMÞ
2mþ1 ¼ UR.

Associated with the Mth estimates fUðMÞ; aðMÞg are 2mðnþ 1Þ scalar measures of error. Across each

genuinely nonlinear wave we have a vector error Hk 2 Rn:

HL
k ðUk�1;Uk; akÞ ¼ Uk U

ðMÞ
k�1; ak

� �
�U

ðMÞ
k ; ð13aÞ
HR
k ðUk;Ukþ1; akÞ ¼ Uk U

ðMÞ
kþ1; ak

� �
�U

ðMÞ
k ; ð13bÞ

and associated with the contact discontinuities is an error vector Hc 2 R2m,

HcðUm;Umþ1Þ ¼ PðUmþ1Þ �PðUmÞ; ð14Þ

where P : Rn 7!R2m is the projection of U onto the vector space orthogonal to that spanned by the contact

discontinuities. Vector P is a set of independent nonlinear variables which are Riemann invariants of the
ðn� 2mÞ-fold degenerate contact discontinuities. That is, the jump conditions at the contact are satisfied if

and only if these variables are continuous at the contact.
Our iterative scheme seeks to zero Hk and Hc using a modified Newton�s method to perturb the estimated

states Uk and wave strengths ak. To the left of the contact, we have

0 ¼ HL
1 � IDU1 þ

oHL
1

oa1
Da1; ð15aÞ

0 ¼ HL
2 � IDU2 þ

oHL
2

oa2
Da2 þ

oHL
2

oU1

DU1; ð15bÞ

..

.

0 ¼ HL
m � IDUm þ oHL

m

oam
Dam þ oHL

m

oUm�1

DUm�1; ð15cÞ
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at the contact we have

0 ¼ Hc þ DUPðUmþ1ÞDUmþ1 � DUPðUmÞDUm; ð15dÞ

and to the right of the contact we have

0 ¼ HR
mþ1 � IDUmþ1 þ

oHR
mþ1

oamþ1

Damþ1 þ
oHR

mþ1

oUmþ2

DUmþ2; ð15eÞ

..

.

0 ¼ HR
2m�1 � IDU2m�1 þ

oHR
2m�1

oa2m�1

Da2m�1 þ
oHR

2m�1

oU2m
DU2m; ð15fÞ

0 ¼ HR
2m � IDU2m þ oHR

2m

oa2m
Da2m ð15gÞ

as defining equations for the perturbations DU and Da that would zero the error vectors H if they were

linear.

In block-factored form, this sparse linear system of ð2mnþ 2mÞ equations in ð2mnþ 2mÞ variables is

I � oHL
1

oa

� oHL
2

oU1
I � oHL

2

oa

� oHL
3

oU2
I � oHL

3

oa

DUPðU3Þ �DUPðU4Þ 0

I � oHR
4

oU5
� oHR

4

oa

I � oHR
5

oU6
� oHR

5

oa

I � oHR
6

oa

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

DU1

DU2

DU3

DU4

DU5

DU6

Da

0
BBBBBBBB@

1
CCCCCCCCA

¼

HL
1

HL
2

HL
3

Hc

HR
4

HR
5

HR
6

0
BBBBBBBB@

1
CCCCCCCCA

ð16Þ

(illustrated for the particular case m ¼ 3). By a sequence of simple manipulations, this system may be

triangularized. First, multiply (15c) by �DUPðUmÞ and multiply (15e) by DUPðUmþ1Þ, then add these

equations to (15d) to eliminate DUm and DUmþ1. Carrying on similarly, a block-triangular form results.
For the case m ¼ 3 one obtains

C
� oHL

1

oa I

� oHL
2

oa � oHL
2

oU1
I

� oHL
3

oa � oHL
3

oU2
I

� oHL
6

oa I

� oHL
5

oa � oHR
5

oU6
I

� oHL
4

oa � oHR
4

oU5
I

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

Da
DU1

DU2

DU3

DU6

DU5

DU4

0
BBBBBBBB@

1
CCCCCCCCA

¼

b
HL

1

HL
2

HL
3

HR
6

HR
5

HR
4

0
BBBBBBBB@

1
CCCCCCCCA

ð17Þ

in which only one diagonal block element, C, is nontrivial. Thus, instead of solving a single ð2mnþ 2mÞ�
ð2mnþ 2mÞ system (16), one need only solve a single ð2mÞ � ð2mÞ system:

C

Da1
..
.

Da2m

0
B@

1
CA ¼ b; ð18Þ
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with

Cik ¼
DUPiðUmÞ

Qm
l¼kþ1

oHL
l

oUl�1

� �
oHL

k
oak

if k6m;

�DUPiðUmþ1Þ
Qk�1

l¼mþ1

oHR
l

oUlþ1

� �
oHR

k
oak

if kPmþ 1;

8<
: ð19aÞ
bi ¼ �
Xm
k¼1

DUPiðUmÞ
Ym
l¼kþ1

oHL
l

oUl�1

 !
HL

k þ
X2m

k¼mþ1

DUPiðUmþ1Þ
Yk�1

l¼mþ1

oHR
l

oUlþ1

 !
HR

k þ ðHcÞi: ð19bÞ

Then, evaluate sequentially

DU1 ¼ HL
1 þ oHL

1

oa1
Da1; ð20aÞ

DU2 ¼ HL
2 þ oHL

2

oa2
Da2 þ

oHL
2

oU1

DU1; ð20bÞ

..

.

DUm ¼ HL
m þ oHL

m

oam
Dam þ oHL

m

oUm�1

DUm�1; ð20cÞ

and

DU2m ¼ HR
2m þ oHR

2m

oa2m
Da2m; ð20dÞ

DU2m�1 ¼ HR
2m�1 þ

oHR
2m�1

oa2m�1

Da2m�1 þ
oHR

2m�1

oU2m
DU2m; ð20eÞ

..

.

DUmþ1 ¼ HR
mþ1 þ

oHR
mþ1

oamþ1

Damþ1 þ
oHR

mþ1

oUmþ2

DUmþ2 ð20fÞ

for the 2m n-dimensional state vector perturbations DUk.

With error vectors H and all derivatives computed at states UðMÞ with strengths aðMÞ, we then obtain the

ðM þ 1Þ iterate

U
ðMþ1Þ
k ¼ U

ðMÞ
k þ fDUk; ð21aÞ
aðMþ1Þ
k ¼ aðMÞ

k þ fDak ð21bÞ
for k ¼ 1; . . . ; 2m, with 0 < f6 1 a line search parameter in the modified Newton method. We use an ap-

proximate line search which seeks the smallest nonnegative integer i such that the sum of squares error for
iterative estimate ðM þ 1Þ with f ¼ 2�i is less that the sum of squares error for estimate ðMÞ.

One way to initialize our iterative scheme is with the result of a linear decomposition. We begin by

constructing an estimate to (6) by resolving the jump sUt ¼ UR � UL in right eigenvectors ~rr of a composite

matrix of right eigenvectors ~RR after [9]

að0Þk ¼ �eTk ~RR
�1ðUR � ULÞ; ð22aÞ
U
ð0Þ
k ¼ U

ð0Þ
k�1 � að0Þk ~rrk ð22bÞ
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for k ¼ 1; 2; . . . ;m; and

að0Þk ¼ �eTnþk�2m
~RR�1ðUR � ULÞ; ð23aÞ
U
ð0Þ
k ¼ U

ð0Þ
kþ1 � að0Þk ~rrnþk�2m ð23bÞ

for k ¼ mþ 1;mþ 2; . . . ; 2m. The sign ambiguity in (22) and (23) reflects uncertainty in the sign of r � DUk,
the change in wave speeds along a simple wave, and the interpretation of ak > 0 as being a shock or a

rarefaction. This initial condition is a formally second-order accurate approximation to the converged

solution.
A less accurate initial condition comes from taking U

ð0Þ
k ¼ UL for k ¼ 1; 2; . . . ;m; U

ð0Þ
k ¼ UR for

k ¼ mþ 1;mþ 2; . . . ; 2m; and að0Þk ¼ 0 for all waves. Numerical experiments have shown that this first-order

accurate initial condition is sometimes better than the second-order approach, since the second-order ap-

proach may select points U
ð0Þ
k in phase space that are not physically valid, and may prevent the algorithm

from converging. When the algorithm converges with both sets of initial values, both solutions are

numerically equivalent.

2.1. k-Shocks

Our treatment of shocks follows an approach recommended by P. Colella, based on the finite difference

Eqs. (24)–(27). Let ak parameterize the strength of a k-shock centered at state U0,

ak ¼ lk � ðU � U0Þ; ð24Þ

where lk is the kth left eigenvector of A0 ¼ AðU0Þ, and define the vector . to be

ak. ¼ U � U0 ð25Þ

with normalization

lk � . ¼ 1: ð26Þ

Then,

F ðU0 þ ak.Þ � F ðU0Þ
ak

¼ s. ð27Þ

is a finite difference representation of the shock Hugoniot relations.

To solve (27) we expand . in the right eigenvalues of A0,

. ¼
Xn
i

ciri; ck ¼ 1: ð28Þ

Then (27) may be viewed as n equations in n unknowns: the shock velocity s, and the n� 1 nontrivial

expansion parameters ci6¼k.

For each estimate ðc; sÞ of the solution there is a vector error measure

w ¼ F ðU0 þ ak.Þ � F ðU0Þ
ak

� s. ð29Þ

with derivatives

ws ¼ �. ð30Þ
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and

wci
¼ Að � sIÞri: ð31Þ

A Newton iteration may then be constructed by solving for the change in ðc; sÞ that would zero w if it
were linear:

D

..

.

ci6¼k

..

.

s

0
BBBB@

1
CCCCA ¼ �B�1w; ð32aÞ
B ¼ � � � ðA� sIÞri6¼k � � � �.½ �: ð32bÞ

In the limit of infinitesimal shocks, the matrix approaches

lim
ak!0

B ¼ � � � ðA0 � kkIÞri � � � �rk½ � ¼ � � � ðki � kkÞri � � � �rk½ �; ð33Þ

which is full rank since the vectors ri6¼k, rk form a complete set, and the eigenvalues k are assumed distinct.

This analysis also holds for linearly degenerate contacts of multiplicity one.

For finite strength shocks a proof that B is invertible is lacking. If the state U is near a Hugoniot locus,

then ðA� sIÞ will be invertible for the general (nonzero shock strength) case since s is not an eigenvalue of

AðUÞ. The matrix appearing in (32) may therefore be written as

B ¼ ðA� sIÞ R0
0 j

h
� ðA� sIÞ�1.

i
; ð34Þ

where R0
0 is the n� ðn� 1Þ matrix of right eigenvectors of A0 ¼ AðU0Þ, with vector rk omitted. The overall

matrix is therefore invertible if ðA� sIÞ�1. has a component in the nullspace of R0
0, or if

lTk ðA� sIÞ�1. ¼
X
i

cil
T
k ðA� sIÞ�1ri 6¼ 0; ck ¼ 1: ð35Þ

Since ðA� sIÞ is nonsingular and is unrelated to A0 a failure of (35) would be accidental.

So, given a k-shock strength ak one may employ a modified Newton iteration based on (32) to compute
UðU0; akÞ. This is the shock version of the function employed in (13) for the computation of error vectors

HL=R.

The Newton iteration for the multiple shooting method calls for derivatives of UðU0; akÞ with respect to

the centering vector U0, and with respect to strength ak. Differentiation of the jump condition

F ðUÞ � F ðU0Þ ¼ sðU � U0Þ with respect to the shock wave velocity s, and with respect to the centering

vector U0, gives

UðU0; sÞU0
¼ ðAðUÞ � sIÞ�1ðA0 � sIÞ; ð36aÞ
UðU0; sÞs ¼ ðAðUÞ � sIÞ�1ðU � U0Þ ð36bÞ

and changing independent variables one obtains

UðU0; aÞa ¼
UðU0; sÞs
aðU0; sÞs

; ð37aÞ
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UðU0; aÞU0
¼ UðU0; sÞU0

� UðU0; sÞs
aðU0; sÞU0

aðU0; sÞs
: ð37bÞ

Next, differentiation of (24) gives

aðU0; sÞs ¼ lTk UðU0; sÞs; ð38aÞ
aðU0; sÞU0
¼ lTk ðUðU0; sÞU0

� IÞ þ ðlTk ÞU0
ðU � U0Þ; ð38bÞ

and in combination,

UðU0; aÞa ¼
ðAðUÞ � sIÞ�1ðU � U0Þ
lTk ðAðUÞ � sIÞ�1ðU � U0Þ

; ð39aÞ
UðU0; aÞU0
¼ ðAðUÞ � sIÞ�1ðA0 � sIÞ � UðU0; aÞa

� lTk ½ðAðUÞ
�

� sIÞ�1ðA0 � AðUÞÞ� þ ðlTk ÞU0
ðU � U0Þ

�
ð39bÞ

determine the derivatives necessary to construct oHk=oa and oHk=oU for shocks in the multiple shooting

method.

If the reparameterization aðnÞ (12) is not monotonic, then two or more values of wave parameter n, say n0

and n00, will give the same value of parameter a: aðn0Þ ¼ aðn00Þ. This implies that the finite difference equation

(27) will then have multiple solutions using this value of a. In this case, the solution obtained by the al-
gorithm describe above will be sensitive to the starting value of the iteration sequence.

2.2. k-Rarefactions

For rarefactions, we have the ordinary differential equation based on (11) and (12):

dU
da

¼ dU
dn

dn
da

¼ rkðUÞ
lTk rkðUÞ ; ð40aÞ
Uð0Þ ¼ U0: ð40bÞ

Since shock and rarefaction branches need be only C1 for the multiple shooting method to be second-order,

it is sufficient to evaluate dn=da only at the centering point U0, where dn=da ¼ 1. Thus, we have the initial

value problem

dU
da

¼ rkðUÞ; ð41aÞ
Uð0Þ ¼ U0; ð41bÞ

which we solve together with the initial value problem

dW
da

¼ DUrkðUðaÞÞð ÞW ðaÞ; ð42aÞ
W ð0Þ ¼ I ð42bÞ
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derived by differentiation with respect to U0 of U 0ðU0; aÞ ¼ f ðU0;UðU0; aÞÞ. We evaluate these initial value

problems with a fourth-order Runge–Kutta method. Then,

UðU0; aÞa ¼ rkðUðaÞÞ; ð43aÞ
UðU0; aÞU0
¼ W ðaÞ ð43bÞ

determine oHk=oa and oHk=oU for rarefactions.
3. Application to hyperelasticity

The one-dimensional (direction g) equations of hyperelasticity may be written as [9]

o

ot

qv
qE
ge1
ge2
ge3

0
BBBB@

1
CCCCAþ o

oxg

vgqv� eTg r
vgqE � eTg rv

gvd1g
gvd2g
gvd3g

0
BBBB@

1
CCCCA ¼

0

0
ðv� ðr � gTÞÞTe1
ðv� ðr � gTÞÞTe2
ðv� ðr � gTÞÞTe3

0
BBBB@

1
CCCCA; ð44Þ

where v is the velocity, q the mass density, E the total energy, g the inverse deformation tensor, and r the

Cauchy stress.

These equations are based on the kinematics of a solid whose motion is characterized by a time-
dependent mapping / from material (Lagrangian) coordinates ~aa to spatial (Eulerian) coordinates~xx:

~xx ¼ ~//ð~aa; tÞ: ð45Þ

The gradient of this mapping is the deformation gradient F ,

F ¼ ra/; Fab ¼
dxa
dab

; ð46Þ

and the inverse of F defines g; g ¼ F �1. F and g are subject to the equality of mixed partial derivatives;

equivalently,

r� gT ¼ 0: ð47Þ

The extra terms v� ðr � gTÞ in (44) are therefore zero on the constraint manifold. Their presence guar-

antees that the system is hyperbolic whenr� gT differs from 0, as it must in numerical computation [3,4,9].

The weak form of constraint (47) is

sgestn ¼ 0; s � n ¼ 0 ð48Þ

that is, the jump in direction n of tangential components ges of tensor g is zero. Analysis of (44) below

shows that this condition is satisfied automatically in smooth one-dimensional flow. Therefore, for those

Riemann problems where (47) is satisfied by the initial condition, it is satisfied numerically and analytically

for all time. Consequently, our analysis of the one-dimensional Riemann problem will ignore the right-hand

side nonconservative terms ½v� ðr � gTÞ�T.
A slightly broader class of problems may be considered in which (47) does not hold strictly in the initial

condition. Physically, such a problem may be constructed by tearing the material into two parts, subjecting

the parts to independent homogeneous one-dimensional deformations, then rejoining them. At the resulting
contact, the underlying Lagrangian coordinate is discontinuous and r� gT is not defined. The weak form
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of the constraint then gives sgestn ¼ constant at the contact. For such problems the constraint will be

obeyed on either side of the contact, and the weak form will hold at the contact for all time. Again, ignoring

the nonconservative right hand side terms gives the proper physical result.
The mass density q is related to the tensor g,

q ¼ q0 det g; ð49Þ

where q0 is the density in the undeformed (F ¼ g ¼ I) reference frame.

We derive the stress r as a thermodynamic derivative of the internal energy E ¼ E � 1
2
v2,

rab ¼ �q
oE

ogeb

����
S

gea: ð50Þ

In our analysis of (44) we will make reference to the g-directed acoustic wave propagation tensor A½g�,

A½g� ¼ � oreg
ogeg

����
S

g: ð51Þ

Both r and A½g� are symmetric. The acoustic wave propagation tensor is positive definite for thermo-

dynamically stable substances [9] and may be decomposed to yield the Lagrangian wave speeds
Kac ¼ diagðkac;1; kac;2; kac;3Þ:

A½g� ¼ qXacK
2
acX

�1
ac : ð52Þ

We assume without loss of generality that the eigenvalues are ordered, kac;1 6 kac;2 6 kac;3, and that Xac is

unitary, X�1
ac ¼ X T

ac.

The linearized matrix A ¼ DUF ðUÞ derived from (44) is

AðUÞ ¼

veTg þ vgI 0 � oreg
oge1

� qvvgeT1 F
� �

EeTg �
eTg r

q

� �
vg � vToreg

oge1
� qEvgeT1 F þ vTregeT1 F

� �
d1g

g
q 0 ðvgI � d1ggveT1 F Þ

d2g
g
q 0 ð�d2ggveT1 F Þ

d3g
g
q 0 ð�d3ggveT1 F Þ

0
BBBBBBBBB@

� oreg
oge2

� qvvgeT2 F
� �

� oreg
oge3

� qvvgeT3 F
� �

� vToreg
oge2

� qEvgeT2 F þ vTregeT2 F
� �

� vToreg
oge3

� qEvgeT3 F þ vTregeT3 F
� �

ð�d1ggveT2 F Þ ð�d1ggveT3 F Þ
ðvgI � d2ggveT2 F Þ ð�d2ggveT3 F Þ
ð�d3ggveT2 F Þ ðvgI � d3ggveT3 F Þ

1
CCCCCCCCA
; ð53Þ

with eigenvalues K ¼ diagðvgI � pKac; vg; vgI ; vgI ; vgI þ KacÞ. Here,

p ¼
0 0 1

0 1 0

1 0 0

0
@

1
A ð54Þ

is a permutation introduced to assist in establishing the canonical ordering (3).
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In the special case g ¼ 1, the right eigenvectors R are:

R ¼

ðqveT1Xac � qXacKacÞp 0 qv eT2 � eT1� 2

� �
qv eT3 � eT1� 3

� �
ðqEeT1Xac � eT1rXac � qvTXacKacÞp 1 qE eT2 � eT1� 2

� �
qE eT3 � eT1� 3

� �
ðgXacÞp 0 �g� 2 �g� 3

0 0 g 0

0 0 0 g

0
BBBBBB@

ðqveT1Xac þ qXacKacÞ
ðqEeT1Xac � eT1rXac þ qvTXacKacÞ

ðgXacÞ
0

0

1
CCCCCCA
; ð55Þ

and the left eigenvectors L ¼ R�1 are:

L ¼

� 1
2q pK

�1
ac X

�1
ac 0 1

2
p½X�1

ac þ K�1
ac X

�1
ac ve

T
1 �F 1

2
p½X�1

ac � 2 þ K�1
ac X

�1
ac ve

T
2 �F

�vT 1 ½qðv2 � EÞeT1 þ eT1r�F ½qðv2 � EÞeT2 þ eT1r� 2�F
0 0 0 F

0 0 0 0

þ 1
2q K

�1
ac X

�1
ac 0 1

2
½X�1

ac � K�1
ac X

�1
ac ve

T
1 �F 1

2
½X�1

ac � 2 � K�1
ac X

�1
ac ve

T
2 �F

0
BBBBBBB@
1
2
p½X�1

ac � 3 þ K�1
ac X

�1
ac ve

T
3 �F

½qðv2 � EÞeT3 þ eT1r� 3�F
0

F
1
2
½X�1

ac � 3 � K�1
ac X

�1
ac ve

T
3 �F

1
CCCCCCA
: ð56Þ

In (55) and (56) the symbols � 2 and � 3 denote

� 2 ¼
ore1
oge1

����
S

g
� ��1

ore1
oge2

����
S

g
� �

¼ � 1

q
XacK

�2
ac X

�1
ac

ore1
oge2

����
S

g
� �

; ð57aÞ
� 3 ¼
ore1
oge1

����
S

g
� ��1

ore1
oge3

����
S

g
� �

¼ � 1

q
XacK

�2
ac X

�1
ac

ore1
oge3

����
S

g
� �

: ð57bÞ

In 1-directed flow, it is apparent that the quantities ge2 and ge3 may be dropped from consideration in

the analysis of the nonlinear waves. Likewise, any passively advected scalar may be dropped, including

terms describing the plastic deformation tensor and work hardening parameter [9]. We may therefore

restrict ourselves to the reduced system in variables qv, qE, and ge1, for which

A ¼
veT1 þ v1I 0 � ore1

oge1
� qvv1eT1 F

� �
EeT1 �

eT
1
r

q

� �
v1 � vTore1

oge1
� qEv1eT1 F þ vTre1eT1 F

� �
g
q 0 ðv1I � gveT1 F Þ

0
BB@

1
CCA; ð58aÞ
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R ¼
qðveT1Xac � XacKacÞp 0 qðveT1Xac þ XacKacÞ

qðeT1 ½EI � r
q�Xac � vTXacKacÞp 1 qðeT1 ½EI � r

q�Xac þ vTXacKacÞ
ðgXacÞp 0 ðgXacÞ

0
@

1
A; ð58bÞ
L ¼
� 1

2q pK
�1
ac X

�1
ac 0 1

2
p½X�1

ac þ K�1
ac X

�1
ac ve

T
1 �F

�vT 1 ½qðv2 � EÞeT1 þ eT1r�F
þ 1

2q K
�1
ac X

�1
ac 0 1

2
½X�1

ac � K�1
ac X

�1
ac ve

T
1 �F

0
B@

1
CA; ð58cÞ

and

K ¼ diagðv1I � pKac; v1; v1I þ KacÞ: ð58dÞ

For this system, then, m ¼ 3 and n ¼ 7.

Although (55) and (58b) appear to be deterministic analytical formulae, they are not. This is because the

acoustic eigenvectors Xac, chosen to be unitary, are determined by (52) only to within a sign. To keep the

sense of the eigenvectors consistent across an integral curve, and to maintain consistency with Lax�s entropy
condition, the sign of columns of Xac must be fixed to some standard. We adopt a standard, which affects

interpretation of the wave strengths ak, by analysis of the condition of genuine nonlinearity. In the present

case the test for genuine nonlinearity gives

q4 ¼ r4 � DUv1 ¼ 0; ð59aÞ
q4�c ¼ ðr4�c � DU Þðv1 � kac;cÞ ¼ �kac;cXac;1c �
okac;c
oga1

����
S

gabXac;bc; ð59bÞ
q4þc ¼ ðr4þc � DU Þðv1 þ kac;cÞ ¼ þkac;cXac;1c þ
okac;c
oga1

����
S

gabXac;bc ð59cÞ

for c ¼ 1; 2; 3. We choose, arbitrarily, to fix the sign of columns of Xac to make qc; c ¼ 1; 2; 3; negative. With

this choice, HL
k (13a) calls for rarefaction when a < 0, and a shock when a > 0. The sense of integration is

different for HR
k (13b) because for these terms the wave is centered on the right state. Thus, the limits of

integration are effectively reversed at the same time that the sign of q is reversed. So, again, a < 0 calls for a

rarefaction and a > 0 a shock.

Consideration of (55) shows that the linearly degenerate eigenvectors rk obey

ðrk � DU Þre1 ¼ 0; ð60aÞ
ðrk � DU Þv ¼ 0; ð60bÞ
where the derivative of re1 is taken at constant entropy. It follows therefore that the six-dimensional

projection P maps from ðqv;E; ge1Þ onto ðv; re1Þ (see (15d)):

P U ; ge2; ge3ð Þ ¼ v
re1

� �
; ð61Þ

and therefore (see (19)):

DUP ¼
1
q I

� �
0 � veT1 F

T
	 


� ore1
oE

��
g
vT

q

� �
1
q

ore1
oE

��
g

� �
ore1
oge1

���
E
þ ðv2 � EÞ ore1

oE

��
g
eT1 F

� �
0
@

1
A: ð62Þ
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The derivatives DUlk and DUrk appear in the shock and rarefaction wave curve derivatives (39b) and (42a).

These terms require determination of DUXac and of DUKac: a first-order perturbation problem.

Denote the eigenvalues of A½1� by the diagonal matrix Q (Q ¼ qK2
ac), then,

AXac ¼ XacQ; ð63aÞ
AUXac þAðXacÞU ¼ ðXacÞUQþ XacQU ; ð63bÞ
X�1
ac AUXac þ QX�1

ac ðXacÞU ¼ X�1
ac ðXacÞUQþ QU : ð63cÞ

The diagonal entries of (63c) give

ðQkkÞU ¼ ðXacekÞTAU ðXacekÞ ð64aÞ

and with Qkk, k ¼ 1; 2; 3 distinct, the off-diagonal entries give

ðXacekÞU ¼
X
j 6¼k

ðXacejÞTAU ðXacekÞ
Qkk � Qjj

ðXacejÞ: ð64bÞ

Partial derivatives with respect to conserved variables ðqv; qE; gÞ are obtained from partial derivatives

with respect to primitive variables ðv;E; gÞ with:

o

oqva

����
qE;g

¼ 1

q
o

ova

����
g;E

� va
q

o

oE

����
g;v

; ð65aÞ
o

oqE

����
g;qv

¼ 1

q
o

oE

����
g;v

; ð65bÞ
o

ogab

����
qE;qv

¼ o

ogab

����
E;v

þ ðvcvc � EÞFba
o

oE

����
g;v

� vcFba
o

ovc

����
g;E

: ð65cÞ
4. Examples

4.1. Hyperelastic equation of state

To illustrate the method with sample calculations we use a hyperelastic equation of state model after

[10]. We assume a separation of the total internal energy as follows:

EðCe; SÞ ¼ EhðI3Þ þ EtðI3; SÞ þ EsðI1; I2; I3Þ; ð66Þ

where Eh describes the isentropic, hydrostatic compressional energy; Et is the thermal energy associated

with changing entropy at constant volume; and Es is the energy associated with isochoric shearing. In (66)

I1, I2, and I3 are the isotropic invariants of the elastic Green tensor Ce:

Ce ¼ F TF ; ð67aÞ
I1ðCeÞ ¼ trðCeÞ; ð67bÞ
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I2ðCeÞ ¼ 1

2
trCeð Þ2

h
� tr Ceð Þ2

i
; ð67cÞ
I3ðCeÞ ¼ detðCeÞ ¼ q0

q

� �2

: ð67dÞ

The hydrostatic energy is given by the universal equation of state [12,16,17], determined by the zero

pressure isentropic bulk modulus K0S and by the isentropic pressure derivative of the isentropic bulk

modulus at zero pressure, K 0
0S:

EhðI3Þ ¼ � 4K0S

q0ðK 0
0S � 1Þ2

ð1þ rKÞe�rK ; ð68Þ

with

rK ¼
3 K 0

0S � 1
	 


2

q0

q

� �1=3
"

� 1

#
: ð69Þ

Density q is understood to depend on I3 through (67d).

EtðI3; SÞ is the thermal part, modeled on a Mie–Gr€uuneisen form

EtðI3; SÞ ¼ CVT0 exp
S � S0
CV

� ��
� 1

�
exp

c0 � cðI3Þ
q

� �
; ð70Þ

where CV is a constant heat capacity, S0 and T0 are the entropy and temperature in the reference config-

uration (at zero pressure and density q0), and where cðI3Þ is the thermodynamic Gr€uuneisen parameter given

by the model equation

c ¼ c0
q0

q

� �q

; ð71Þ

with c0 and q 6¼ 0 constants.

The energy change due to shearing motion at constant volume is given by

EsðI1; I2; I3Þ ¼
GðqÞ
2q

bI1I
�1=3
3

h
þ ð1� bÞI2I�2=3

3 � 3
i
: ð72Þ

The parameter b, 06b6 1, is an adjustable parameter chosen to control the symmetry of the shear po-

tential away from the hydrostat (see [11]). The function GðqÞ is the shear modulus, also constructed to

follow the universal equation of state formalism, and determined by the zero pressure shear modulus G0

and the pressure derivative of the shear modulus G0
0, also evaluated at zero pressure:

GðqÞ ¼ G0 ð1
"

� rGÞ
q
q0

� �1=3

� 4

3
rG

K0S

G0

G0
0

�
� 1

��1 q
q0

� �2=3
#
e�rG ; ð73Þ

where

rG ¼ 3

2

K0S

G0

G0
0

�
� 1

�
q0

q

� �1=3
"

� 1

#
: ð74Þ

Note that on the hydrostat of an elastically isotropic solid I1 ¼ 3I1=33 and I2 ¼ 3I2=33 , and so Es ¼ 0.
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To determine temperature T as a function of g and E we first rearrange (66) to solve for Et,

Et ¼ E� EhðI3Þ � EsðI1; I2; I3Þ ð75Þ
and then differentiate to obtain

T ¼ oE

oS

����
Ce

¼ Et

CV

þ T0 exp
c0 � c
q

� �
: ð76Þ

Parameters for this model, chosen to approximate the elastically isotropic response of copper, are given

in Table 1.

4.2. Solution of the Riemann problem

Here, we illustrate the use of our method in the computation of a simple Riemann problem solution. Left

and right states UL and UR are constructed from the parameters in Table 2. The components of g were
chosen arbitrarily, but so as to avoid some of the pathological conditions described in Section 5. These

initial conditions represent a moderate strength longitudinal compression, with a small component of shear.
Table 1

EOS parameters for elastically isotropic approximation to copper

Parameter Value Units

q0 8.93 g/cm2

K0S 138 GPa

K 0
0S 4.96 –

G02 46.9 GPa

G0
0 0.57 –

b 0 –

T0 300 K

CV 3:9� 10�4 kJ/g�K
c0 1.96 –

q 1 –

Table 2

Initial conditions for calculation shown in Fig. 1

Parameter Value Units

Left state

EL )3.1 kJ/g

gL
1 0 0

0:01 1:1 0
0:02 0 1:2

0
@

1
A –

vL
2
0

0:1

0
@

1
A km/s

Right state

ER )3.1 kJ/g

gR
1 0 0

�0:02 1:1 0

0:01 0 1:2

0
@

1
A –

vR
0

�0:03
�0:01

0
@

1
A km/s
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The strength is in the range attainable by single-stage propellant-driven guns, but represents less than 10%

of the velocity range of planetary impacts.

Even with these relatively mundane conditions, significant discrepancies between the exact solution and
the approximate solution are observed for some variables. The approximate solution, shown in Fig. 1 by

dashed lines and open symbols, was obtained by the procedure described in [9] using a primitive variable

representation of A (i.e., q, v, E, and ge1, in place of the conservation form variables qv, qE, and ge1). The
exact results are displayed with solid lines and filled symbols. Circles represent the end points of the six

nonlinear wave systems, and squares represent the contact discontinuity.

The exact solution consists of a 1-shock, a 2-rarefaction, a 3-shock, a 4-shock, a 5-rarefaction, and a

6-shock. Each wave system obeys the Lax entropy conditions. The existence of rarefactions is not
ρ

-6 -4 -2 0 2 4 6 8

E

-6 -4 -2 0 2 4 6 8
g11

-6 -4 -2 0 2 4 6 8

g21

-6 -4 -2 0 2 4 6 8
g31

-6 -4 -2 0 2 4 6 8

σ11

-6 -4 -2 0 2 4 6 8

Fig. 1. Test problem showing approximate Riemann solution (IC in Table 2) after [9] (dash line, open symbols), and �exact� result
(solid line, filled symbols). The abscissa is wave velocity in km/s. Density q (range 11.7876–13.5924 g/cm2), internal energy E ()3.1 to

)1.925 kJ/g), inverse deformation tensor g11 (1–1.153), g21 ()0.024–0.015), and g31 (0.01–0.041), normal stress r11 ()155.9 to )62.00
GPa), shear stresses r21 ()1.094–1.735 GPa) and r31 ()3.273 to )0.720 GPa), entropy S (0–1.808�10�5 kJ/g�K), temperature T ()478–
612 K), velocities vx (0–2 km/s), vy ()0.035–0.021 km/s), and vz ()0.01–0.1 km/s).
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Fig. 1. (continued)
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immediately obvious in the figures because the width of the wave fans is small. The 2-rarefaction is spread

from only )1.6606 to )1.6600 km/s, and the 5-rarefaction from only 3.6600 to 3.6608 km/s.

A dramatic failure of the approximate solver is seen in the temperature and entropy fields. The ap-
proximate solver predicts negative temperatures, and pure imaginary entropy (the zero real part is plotted

in the figure). The internal energy calculation is not unreasonable, but the partitioning of internal energy

between compression (Eh and Es) and thermal (Et) terms is incorrect. The result is a nonphysical

approximate solution.

Fig. 2 shows the result of a calculation using the initial conditions of Table 3. This test problem is similar

to the first, but has initial states consistent with uniaxial deformation. In this case, the 2- and 5-waves are
-4 -2 0 2 4 6

E

-4 -2 0 2 4 6
g11

-4 -2 0 2 4 6

g21

-4 -2 0 2 4 6
g31

-4 -2 0 2 4 6

σ11

-4 -2 0 2 4 6

ρ

Fig. 2. Uniaxial isotropic case with degeneracy (IC in Table 3). Approximate solution after [9] (dash line, open symbols), and �exact�
result (solid line, filled symbols). The abscissa is wave velocity in km/s. Density q (range 8.930–10.810 g/cm2), internal energy E ()3.901
to )3.374 kJ/g), inverse deformation tensor g11 (1–1.211), g21 (0–0.0608), and g31 (0–0.127), normal stress r11 ()60.20 to )0.73 GPa),

shear stresses r21 ()3.40–0 GPa) and r31 ()7.03–0 GPa), entropy S (0–2.509�10�4 kJ/g�K), temperature T ()759–784 K), velocities vx
(0–2 km/s), vy ()0.115–0.020 km/s), and vz ()0.08–0.1 km/s).
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Fig. 2. (continued)
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linearly degenerate across the wave system. The solution consists of a 1-shock, a linearly degenerate 2-shock

(a contact discontinuity), a 3-rarefaction, a 4-shock, a linearly degenerate 5-shock (another contact dis-

continuity), and a 6-shock.



Table 3

Initial conditions for calculation shown in Fig. 2

Parameter Value Units

Left state

EL )3.9 kJ/g

gL
1 0 0

0:01 1 0
0 0 1

0
@

1
A –

vL
2
0

0:1

0
@

1
A km/s

Right state

ER )3.9 kJ/g

gR
1 0 0

0 1 0

0:1 0 1

0
@

1
A –

vR
0

�0:03
�0:01

0
@

1
A km/s
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The state space encountered in this example violates several of the assumptions made in Section 2. In

particular, the 2 and 3, and the 4 and 5-waves are degenerate at points across the wave system. Solution of

this problem requires modifications to the algorithm of Section 2 described in Section 5.2.
5. Some pathological conditions

In this section, we consider some pathological conditions that occur in solid mechanics. This treatment is

not exhaustive, but covers several special cases that occur commonly with the simple elastically isotropic

model presented in Section 4.

5.1. Lack of genuine nonlinearity at points of high symmetry

When g is diagonal but not proportional to I , Ce is also diagonal and not proportional to I , with the
result that Xac will be proportional to a permutation of I . The three acoustic waves are aligned with the

principal directions. The fast (kac;3; k1 ¼ v1 � kac;3) wave is a longitudinal mode, Xace3 ¼ e1, and the slow

waves are orthogonal transverse modes. At these special points, r1 � DUk1 is nonzero, and the ordering

method (59) may be used without ambiguity. However, the transverse wave speeds are local extrema, hence

r2 � DUk2 ¼ 0, etc.

Let us suppose this circumstance, with k2 a local minimum. Then, whether a2 is positive or negative, a

finite perturbation dU ¼ a2r2 will increase k2: a rarefaction is required whatever the sign of a2. Conversely,
if k2 is a local maximum, then a shock is required whatever the sign of a2.

Therefore, to obtain a solution obeying Lax�s entropy condition it is insufficient to select the wave type

by the sign of ak when rk � DUkk ¼ 0 at the centering point.

Also, a simple wave trajectory passing though such a point of genuine nonlinearity must terminate at this

point in order to obey the constraint that wave speeds vary monotonically across the wave. Computa-

tionally, this will occur if the acoustic eigenvector sign convention ((59) and subsequent discussion) is

enforced. However, doing this makes the sign of oU=oa calculated on the rarefaction indeterminate, and

this in turn may cause the overall multiple shooting method to fail to converge. Therefore, to assure

convergence, the sign of vectors Xac must be constant along the rarefaction integral, even though this may
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violate wave monotonicity constraints on a given iteration. At the start of a rarefaction wave curve inte-

gration, the sign of Xac is determined as described by (59). Subsequent evaluations of Xac choose the sign to

maximize the inner product of the appropriate columns of Xac with the column obtained in the previously
evaluation on the wave curve.

5.2. Degeneracy I: 0 < kac1 ¼ kac2 < kac3

The analysis above assumes genuine nonlinearity and distinct eigenvectors. Both of these assumptions

break down in a very common circumstance in elastically isotropic materials. In common practice, one

constructs the hyperelastic energy function for an elastically isotopic material as a shear perturbation to a
hydrostatic reference configuration. When evaluated at a point on the hydrostat, the shear modes are

degenerate by virtue of symmetry. Further, since the shear energy is a minimum on the hydrostat the shear

modes are linearly degenerate on the hydrostat, although they are genuinely nonlinear elsewhere.

Two problems arise in this case. First, given kd ¼ kac1 ¼ kac2, the eigenvectors Xace1 and Xace2 of the

acoustic tensor are not uniquely determined: any linear combination of these eigenvectors is itself an ei-

genvector with eigenvalue kd . Neither the shock nor the rarefaction algorithms are uniquely defined in this

case. Second, the perturbation analysis (64b) is not appropriate. Both problems may be addressed if the

degeneracy local: i.e., if upon perturbation of the centering state along either a shock Hugoniot locus or a
rarefaction wave curve the degeneracy is lifted.

We first examine the problem of degeneracy alone (neglecting the lack of genuine nonlinearity) from a

formal point of view to analyze the solution properties. Across a wave k that is degenerate, the degeneracy

may be broken. In the particular case of an elastically isotropic hyperelastic solid constructed from an

isentropic reference curve, this will always happen. Consideration of (63), (64) shows that if nd degenerate

waves are hybridized

X 0
aced1
..
.

X 0
acednd

0
B@

1
CA ¼

Xaced1
..
.

Xacednd

0
BBB@

1
CCCAH ð77Þ

in such a way that

ðX 0
aced1Þ

T
AU ðX 0

aced1Þ � � � ðX 0
aced1Þ

T
AU ðX 0

acednd Þ
..
. . .

. ..
.

ðX 0
acednd Þ

T
AU ðX 0

aced1Þ � � � ðX 0
acednd Þ

T
AU ðX 0

acednd Þ

0
BB@

1
CCA ð78Þ

is diagonal, then terms ðX 0
acediÞ

T
AUðX 0

acedjÞ, i 6¼ j will be identically zero, and the singularities that would

otherwise occur in (64b) will disappear.

In the present circumstance, let us perturbA not by differentiation, but by the action of the rk degenerate
wave, DA ¼ rk � DUA. Combining (77) with (78) we obtain an eigenvalue problem, with eigenvectors H
being the hybridization matrix, and eigenvalues DQ corresponding to the change in eigenvalue upon per-

turbation D (cf, (64a)):

ðXaced1Þ
TDAXaced1 � � � ðXaced1Þ

TDAXacednd
..
. . .

. ..
.

ðXacednd Þ
TDAXaced1 � � � ðXacednd Þ

TDAXacednd

0
BB@

1
CCAh ¼ hdiagðDQd1d1 ; . . . ;DQdnd dnd

Þ: ð79Þ
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The matrix X T
acDAXac

	 

is symmetric, with real eigenvalues, and H is unitary, H�1 ¼ HT. In the nd ¼ 2 case

H may be represented as a rotation

H ¼ cos h sin h
sin h � cos h

� �
: ð80Þ

To be specific, let us suppose that we are interested in computing stateU2 from stateU1 in the degenerate

case. The relevant eigenvector r2 depends on Xac;2, which is not yet uniquely defined. According to (58b),

across wave 2 we have perturbations

Dge1 ¼ ge1X 0
ac;2; ð81aÞ
DE ¼ �eT1rX
0
ac;2; ð81bÞ
DAcl ¼
oAcl

oge1
ge1X 0

ac;2 �
oAcl

oE
eT1rX

0
ac;2; ð81cÞ
Dkac ¼
DQ� QeT1X

0
ac;2

2qkac
: ð81dÞ

The Dr2 perturbation will break the symmetry and lift the degeneracy because the symmetric reference
configuration is defined for zero shear.

By virtue of (80), we may consider (79) with (81c) as a set of simultaneous equations in h. Two solutions

may be obtained in general, one of which satisfies the wave ordering denoted in Fig. 3. One solution comes

from considering the solid line kðaÞ in Fig. 3 as kac;2; the other from considering the dashed line.

This settles the question of uniqueness: a self-consistent prescription is given above for lifting the de-

generacy and identifying the relevant vector Xace2 for the computation of the 2-wave. Unresolved are the

derivatives DUlk and DUrk appearing in (39b) and (42a) respectively. The DUrk derivatives are evaluated

along the rarefaction integral curve, where degeneracy will already be lifted by the perturbation r2 � DU �,
and so these derivatives pose no special problem. The derivatives DUlk appearing in the shock problem are

centered at the degenerate point U0, however, and there the formal analysis breaks down.

For any perturbation f � DUA, a different hybridization Hðf =jf jÞ is required to cancel singularities in

(64b). Since the hybridization depends on the direction of the perturbation, and not its strength, Xac is not

continuous at U0 and therefore the derivative DUXac does not exist.
shock

rarefaction

2

λ3
λ2

2

λ3

∆λ

∆α

λ

Fig. 3. Wave labeling conventions upon lifting k2; k3 degeneracy in state U1 with perturbation dr2, chosen to enforce canonical

ordering.
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However, if the degeneracy is local, in the present case when evaluated at U1, then unless a2 ¼ 0 we

expect the degeneracy to be lifted in U2. Then, instead of

HL
2 ¼ U2ðU1; a2Þ �U2; ð82aÞ
0 ¼ HL
2 � IDU2 þ

oHL
2

oa2
Da2 þ

oHL
2

oU1

DU1 ð82bÞ

we may integrate across the wave starting from the nondegenerate point U2 with

H 0L
2 ¼ U1ðU2;�a2Þ �U1; ð83aÞ
0 ¼ � oH 0L
2

oU2

� ��1

H 0L
2 � DU2 �

oH 0L
2

oU2

� ��1
oH 0L

2

oa2
Da2 þ

oH 0L
2

oU2

� ��1

DU1: ð83bÞ

That is, we may use the formal machinery developed in Section 2, with a redefinition of the terms related to

HL
2 corresponding to a reversed centering.

If a2 ¼ 0 then the derivatives oH=oU and oH=oa are trivial, and again there is no problem. If ja2j is small,

such that the multiple shooting iterations may oscillate between shock and rarefaction solutions, then the

reversed centering (82) should be used consistently from iteration to iteration to preserve the interpretation
of ak (which is different for forward- and reverse-centerings on the shock branch).

The analysis of a combined point of degeneracy and lack of genuine nonlinearity follows the procedure

described above. However, in this case the degeneracy is not lifted by a first order perturbation ðr � DU Þ, but
must be lifted by the second order perturbation ðr � DU Þ2. The wave ordering in this case is not given as

indicated in Fig. 3, but may be as indicated in Fig. 4. As in the simpler genuinely nonlinear case, backward

centering of the solution (82) may be used to compute the desired solution.

If degeneracy occurs along a rarefaction wave curve, but not necessarily at the end points, then reverse

centering will not resolve the eigenvector ambiguity. This circumstance occurred in the calculation shown in
Fig. 2. At each point along the rarefaction wave curve, if degeneracy is detected then an appropriate

hybridization must be calculated.

5.3. Degeneracy II: 0 ¼ kac1 ¼ kac2 < kac3

This circumstance corresponds to a so-called ‘‘soft acoustic mode’’: a thermodynamic loss of shear

strength encountered upon melting. When kac1 ¼ kac2 ¼ 0, r3 and r5 become linearly degenerate and equal,
and so do r2 and r6: there is a double eigenvector deficiency.
   rarefactions

2

λ3
λ2

      shocks

2λ3

λ2

∆λ

∆α ∆λ

∆α

(a) (b)

Fig. 4. Wave labeling conventions upon lifting k2; k3 degeneracy in state U1 with second-order perturbation dr2, chosen to enforce

canonical ordering.
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First we analyze the condition that this degeneracy exists in initial states UL and UR, and persists in all

intermediate states. Then we have

r ¼
r11 0 0

0 r11 0

0 0 r11

0
@

1
A; ð84aÞ
A ¼
qc2 0 0
0 0 0

0 0 0

0
@

1
A; ð84bÞ

and Xac ¼ p (54), Kac ¼ diagð0; 0; cÞ.
Without loss of generality we may at any point perform a ‘‘virtual remap’’ of the underlying Lagrangian

reference coordinate ~aa. That is, set

~gg :¼ g ð85Þ

and then

g :¼
g11 0 0

0 1 0
0 0 1

0
@

1
A; F :¼

1=g11 0 0

0 1 0
0 0 1

0
@

1
A ð86Þ

with initially g11 ¼ 1. Then in place of Eðg; SÞ we construct the internal energy function from Eðg~gg; SÞ. This
mixed symbolic and numeric representation (86), together with (84a), (84b), expose the decoupling of

variables qv2, qv3, g12, and g13 in the matrix A (58a). Thus, in the case of melting we have U ¼ ðqv1; qE; g11Þ,
U 2 R3, and

A ¼
2v1 0 q

g11
ðc2 � v21Þ

E � r11
q v1 qv1ðc2 � EÞ þ v1r11ð Þ 1

g11g11
q 0 0

0
B@

1
CA; ð87aÞ

R ¼
qðv1 � cÞ 0 qðv1 þ cÞ

ðqE � r11 � qcv1Þ 1 ðqE � r11 þ qcv1Þ
g11 0 g11

0
@

1
A; ð87bÞ

L ¼
� 1

2qc 0 1
2g11

1þ v1
c

	 

�v1 1 ½qðv21 � EÞ þ r11�=g11
þ 1

2qc 0 1
2g11

1� v1
c

	 

0
B@

1
CA; ð87cÞ
K ¼ diagðv1 � c; v1; v1 þ cÞ; ð87dÞ

and

P ¼ v1
r11

� �
: ð87eÞ

These equations describe the Euler equations in conservation form, with P ¼ �r11 and qc2 the bulk

modulus KS ¼ oP=o lnqjS , with c the bulk sound speed. This system of dimension n ¼ 3, m ¼ 1, contains

two genuinely nonlinear waves and a single linearly degenerate contact discontinuity.
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The more interesting problem arises when UL and UR are not initially degenerate, but that melting occurs

for example across the 1 wave, so that states U1, U2, and U3 are molten. In this case, the treatment of the 1

wave and of waves 4, 5, 6 follows the prescription of Section 2. The 2- and 3-waves are linearly degenerate,
and let us suppose initially that they could be treated in the manner of a simple wave. The degenerate

vectors 2 and 3 are

rd ¼
qveT1Xacped

q E � r11
q

� �
eT1Xacped

gXacped

0
B@

1
CA ¼

0

0

0

0

g1d
g2d
g3d

0
BBBBBBBB@

1
CCCCCCCCA
; d ¼ 2; 3 ð88Þ

since Xacp ¼ I in this case. These vectors are constant, since in 1-directed flow (g ¼ 1) the variables ge2 and
ge3 are treated as parameters, constant on each side of the contact. Thus,

UdðU0; adÞ ¼ U0 þ adrd ; ð89aÞ
DU0
UdðU0; adÞ ¼ I ; ð89bÞ
o

oad
UdðU0; adÞ ¼ rd ð89cÞ

must apply across these degenerate waves if they were to be treated as genuine waves. However a conse-

quence of (89) and (62) is that columns 2 and 3 of the matrix C (19a) become

0

0

0
or11
oge1

���
E
ge2 ¼ 0

0

0

0
BBBBBB@

1
CCCCCCA
;

0

0

0
or11
oge1

���
E
ge3 ¼ 0

0

0

0
BBBBBB@

1
CCCCCCA

ð90Þ

and so C must be singular. The hypothesis that we may solve this problem as a 6-wave system is false.

Instead, we must recognize that a phase change has occurred across the 1 wave, and so now the projection
P acting across the contacts (including waves 2 and 3) is

P : R7 7!R4; PðUÞ ¼

v1
r11

r21

r31

0
BB@

1
CCA ð91Þ

describing fluid–solid coupling [10].
6. Conclusions

A general iterative solution to the Riemann problem for systems of conservation laws is presented.

Under conditions where Lax�s [6] existence and uniqueness argument holds, our iterative method converges
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to this unique solution. The structure of the method is quite simple although the thermodynamic derivatives

required may be complicated.

An analysis of the equations of hyperelastic solid mechanics reveals that the key assumptions of genuine
nonlinearity and distinct eigenvalues are not always valid. In fact, these pathological conditions occur

under very common conditions for equations of state with high symmetry. For these conditions, relatively

straightforward modifications are recommended to obtain the correct entropy solution.

Using an elastically isotropic hyperelastic model approximating copper, a comparison of exact and

approximate Riemann solutions reveals some significant discrepancies. In the examples of a predominately

normal impact, with a small component of shear, the approximate solver obtains reasonable results for the

hydrodynamic variables density q, normal velocity vx, and normal stress r11. For the internal energy E the

approximate solver is in error by approximately 30%. Entropy S and the derived temperature are non-
physical in the approximate solution.

These results suggest that the approximate solver employed in [9,10] may be inadequate for certain

computations. In particular, problems with temperature-dependent rates of chemical reaction, or tem-

perature- and rate-dependent plasticity, may interact poorly with the approximate solver. Despite the

surprisingly discrepant results between the exact and approximate Riemann solutions, numerical methods

based on the approximate solver perform well and do converge to the correct state values and wave speeds

[9,10]. This occurs because the approximate method is OðDUDAÞ � OðDU 2Þ and so consistent, and stable

and consistent conservation-form methods converge to weak solutions of the conservation laws [5].
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